**Distance, Speed, Time Relationship**

This math revision note aims to help your child understand the relationship between distance, speed, and time, so that your child can become proficient in solving questions that require this understanding.

**Before you read on, you might want to download this entire revision notes in PDF format to print it out for your child, or to read it later.**

**This will be delivered to your email inbox.**

__Example __

A college is holding a 10 km running event. Roger’s running speed is 10 km/h while Helen’s running speed is 5 km/h.

Speed Ratio

Roger | : | Helen |

10 km/h | : | 5 km/h |

2 | : | 1 |

The ratio of Roger’s speed to Helen’s speed is 2:1

For the same distance of 10 km, Roger takes 1 hour while Helen takes 2 hours.

Roger’s speed is 10 km per hour, hence he takes 1 hour to cover 10 km.

(10 km ÷ 10 km/h = 1 h)

Helen’s speed is 5 km per hour, hence she takes 2 hours to cover 10 km.

(10 km ÷ 5 km/h = 2 h)

Time Ratio

Roger | : | Helen |

1 | : | 2 |

The ratio of Roger’s time taken to Helen’s time taken for the same distance is 1:2.

Notice that Speed and Time are inversely proportional to each other.

In other words,

**The speed ratio is the flip side of Time ratio and vice versa**.

The faster/ the more the speed, the less the time taken.

The slower/ the less the speed, the more the time taken.

__Question__

Abhi took 5 hours to drive from City S to City G. Anwar took 6 hours to drive from City G to City S. Abhi’s driving speed is 10 km/h faster than Anwar’s driving speed. How far was City S from City G?

From the question, we can form the Time Ratio.

Time Ratio

Abhi | : | Anwar |

5 | : | 6 |

With the Time Ratio, we can obtain the Speed Ratio since we know the Speed Ratio is the flip side of the Time Ratio.

Speed Ratio

Abhi | : | Anwar | : | Difference |

6 | : | 5 | : | 1 |

6 u | : | 5 u | : | 1 u |

So, the difference that is 1 unit from the Speed Ratio represents 10 km/h.

With that, we can find one person’s speed first.

1 u = 10 km/h

5 u = 10 km/h x 5 = 50 km/h (Anwar’s speed)

Now we can find the distance between the cities easily by using Anwar’s speed multiplied by his time taken.

50 km/h x 6 h = **300 km**

Alternatively, we can find Abhi’s speed and find the distance using his time taken.

6 u = 10 km/h x 6 = 60 km/h (Abhi’s speed)

60 km/h x 5 h = **300 km**

The distance between the two cities is 300 km.

**Before you go, you might want to download this entire revision notes in PDF format to print it out for your child, or to read it later.**

**This will be delivered to your email inbox.**

**Does your child need help in his or her studies?**

**1)** **Live Zoom Lessons at Grade Solution Learning Centre**

At Grade Solution Learning Centre, we are a team of dedicated educators whose mission is to guide your child to academic success. Here are the services we provide:

– Live Zoom lessons

– Adaptably™, an innovative smart learning platform featuring thousands of PSLE and exam-based questions tailored for your child’s practice. Adaptably not only tracks your child’s progress but also identifies their strengths and areas for improvement, providing valuable insights to enhance their learning journey.

– 24/7 Homework Helper Service

We provide all these services above at a very affordable monthly fee to allow as many students as possible to access such learning opportunities.

We specialise in English, Math, Science and Chinese subjects.

You can see our fees and schedules here >>

**2) Pre-recorded Online courses on Jimmymaths.com**

** **

If you are looking for something that fits your budget, or prefer your child learn at his or her own pace, you can join our pre-recorded online Math courses.

Your child can:

– Learn from recorded videos

– Get access to lots of common exam questions to ensure sufficient practice

– Get unlimited support and homework help

You can see the available courses here >>

** **